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ABSTRACT: Protein−protein interactions (PPIs) play key roles in many fundamental biological processes such as cellular signaling
and immune responses. However, it has proven challenging to simulate repetitive protein association and dissociation in order to
calculate binding free energies and kinetics of PPIs due to long biological timescales and complex protein dynamics. To address this
challenge, we have developed a new computational approach to all-atom simulations of PPIs based on a robust Gaussian accelerated
molecular dynamics (GaMD) technique. The method, termed “PPI-GaMD”, selectively boosts interaction potential energy between
protein partners to facilitate their slow dissociation. Meanwhile, another boost potential is applied to the remaining potential energy
of the entire system to effectively model the protein’s flexibility and rebinding. PPI-GaMD has been demonstrated on a model
system of the ribonuclease barnase interactions with its inhibitor barstar. Six independent 2 μs PPI-GaMD simulations have captured
repetitive barstar dissociation and rebinding events, which enable calculations of the protein binding thermodynamics and kinetics
simultaneously. The calculated binding free energies and kinetic rate constants agree well with the experimental data. Furthermore,
PPI-GaMD simulations have provided mechanistic insights into barstar binding to barnase, which involves long-range electrostatic
interactions and multiple binding pathways, being consistent with previous experimental and computational findings of this model
system. In summary, PPI-GaMD provides a highly efficient and easy-to-use approach for binding free energy and kinetics
calculations of PPIs.

■ INTRODUCTION

Protein−protein interactions (PPIs) play key roles in many
fundamental biological processes, including cellular signal
transduction, immune responses, and so on.1 Moreover, PPIs
are implicated in the development of numerous human
diseases and serve as important drug targets.2 Recent work
has shown that developing PPI inhibitors represents a novel
strategy for discovery of drugs with new mechanisms, and a
number of PPI inhibitors have been introduced to the
market.2,3 Therefore, it is critical to investigate mechanisms
of PPIs in both basic biology and applied medical research.
Experimental techniques4 including X-ray crystallography,

nuclear magnetic resonance (NMR), and cryo-electron
microscopy (cryo-EM) have been utilized to determine
structures of protein−protein complexes. Recent years have
seen a dramatic increase in the number of experimentally

determined protein−protein complex structures.5 However, it
is still rather time-consuming and resource-demanding to
obtain such experimental structures. Additionally, these
experimental structures often capture only static pictures of
protein−protein binding in the low-energy states. The very
important intermediate conformational states with higher
energy and dynamic mechanisms of the PPIs are still
challenging to probe from the experiments.
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A number of computational approaches have been
developed to explore PPIs and their binding mechanisms,
including protein−protein docking,6 Brownian dynamics,7 and
molecular dynamics (MD) simulations with both all-atom8 and
coarse-grained models.9 The commonly used approaches for
protein−protein docking include template-based docking such
as HDOCK,10 GRAMM,11 GalaxyTBM,12 and HADDOCK,13

and “ab initio” docking such as SwarmDock,14 ClusPro,15

GalaxyPPDock,12 and MDockPP.16 Template-based docking
remains the most accurate and widely used approach if a
reliable template is available. Although many advanced ab
initio approaches have been proposed, their accuracy could be
still limited due to high degrees of freedom and protein
flexibility during binding.6 Recently, AlphaFold-Multimer17 has
shown significantly increased accuracy in predicting protein−
protein complex structures based on deep learning. While
protein docking or deep learning techniques have been applied
to predict protein binding structures and free energies, they are
not readily able to predict protein binding kinetics.
MD is a powerful technique for all-atom simulations of

biomolecules to explore their structural dynamics, thermody-
namics, and kinetic properties.8c MD simulations have been
applied to refine protein−protein docking poses.18 Addition-
ally, MD has been widely applied to explore protein−protein
binding mechanisms in atomistic detail.19 In this context, PPIs
exhibit unique features, being distinct from the extensively
studied protein−ligand interactions. The protein−protein
binding affinity is often stronger than that of protein−ligand
interactions. Protein−protein binding and unbinding processes
often occurred in significantly longer timescales. Particularly, a
protein−protein dissociation process could take place over
minutes, hours, and even days. Conventional MD (cMD)
simulations have successfully captured fast binding of barstar to
barnase and revealed critical roles of water in the binding
process.8a,b Despite remarkable advances, it remains challeng-
ing to sufficiently sample PPIs through cMD simulations,
especially for the slow protein dissociation processes. Even
with the specialized supercomputer ANTON, it is difficult to
model protein−protein dissociation in hundreds-of-micro-
second cMD simulations.8b

Enhanced sampling methods, including the steered MD,20

umbrella sampling,20,21 metadynamics,19b,22 weighted ensem-
ble,23 replica exchange MD,18a tempered binding,8b and
Markov state models (MSMs),24 have been applied to improve
sampling of PPIs. Such methodological advances have enabled
simulations of millisecond or longer timescale processes,
including protein−protein unbinding. For example, umbrella
sampling was performed by Joshi et al. to delineate the barstar-
barnase dissociation pathways and map the associated free-
energy landscape.21 Parallel tempering metadynamics simu-
lations with well-tempered ensemble (PTMetaD-WTE) and
two carefully chosen collective variables captured both binding
and unbinding processes of the insulin dimer.8b,13 Weighted
ensemble with a total amount of ∼18 μs cMD simulations was
implemented to investigate the mechanism of barstar binding
to barnase.23 The predicted binding rate constant (kon) agreed
well with the experiments.23 Pan et al.8b developed the
tempered binding method and captured repetitive association
and dissociation events for five diverse protein−protein
systems. Plattner et al.24 built a MSM of barstar−barnase
binding and unbinding processes with adaptive high-
throughput cMD simulations. The obtained model revealed
experimentally consistent intermediate structures, binding

energetics, and kinetics. However, such success was achieved
by accumulating about two millisecond cMD simulations,
requiring extraordinary computational resources. Therefore,
while enhanced sampling methods have greatly expanded our
capabilities in modeling PPIs, the above approaches remain
computationally expensive for characterizing protein binding
thermodynamics and kinetics. Compared with more exten-
sively studied protein−ligand binding,25 enhanced sampling of
PPIs is still largely underexplored.
Gaussian accelerated molecular dynamics (GaMD) is

another enhanced sampling technique that works by adding
harmonic boost potential to smooth a biomolecular potential
energy surface.26 It greatly reduces system energy barriers and
accelerates biomolecular simulations by orders of magnitu-
de.26b,27 Because the boost potential usually exhibits a
Gaussian distribution, biomolecular free-energy profiles can
be properly recovered through cumulant expansion to the
second order.26b GaMD provides unconstrained enhanced
sampling without the requirement of predefined reaction
coordinates or collective variables. For PPIs, spontaneous
binding of a G protein mimetic nanobody to a muscarinic G-
protein-coupled receptor (GPCR) was successfully captured in
previous GaMD simulations lasting for ∼4.5 μs.28 However,
protein unbinding over longer timescales is still beyond the
reach of normal GaMD simulations.26a,28 Notably, Paul et al.29

introduced a new accelerated MD (aMD) approach in which a
boost potential was selectively applied on the van der Waals
interactions between the protein MDM2 and its binding
partner PMI. The new approach significantly increased chances
to observe dissociation of PMI from MDM2.
Building on GaMD, we have developed a new PPI-GaMD

approach to explore the PPIs, in which the interaction energy
potential of protein binding partners (both electrostatic and
van der Waals interactions) is selectively boosted to facilitate
protein dissociation. In addition, another boost is simulta-
neously applied on the remaining potential energy of the
system to facilitate rebinding of the proteins. Moreover, we
demonstrate PPI-GaMD on the dissociation and binding
simulations of the barstar to barnase. The reason behind
choosing this system is the availability of a wealth of
experimental3,30 and computational data8a,b,21,23,24 from
extensive studies of this model system. To highlight efficiency
of our PPI-GaMD approach, we focus on sampling the protein
unbinding and rebinding events and predicting the protein
binding free energy and kinetic rates. Remarkably, repetitive
dissociation and association of barstar to barnase were
observed in 2 μs PPI-GaMD simulations. Protein binding
free energies and kinetic rate constants calculated from PPI-
GaMD simulations agreed excellently with the experimental
data. Furthermore, PPI-GaMD simulations provided important
insights into the binding mechanism of barstar to barnase at an
atomistic level. We expect PPI-GaMD to be valuable for
exploring rare events of protein dissociation and binding and
calculating both the protein binding thermodynamics and
kinetics.

■ METHODS
Protein−Protein Interaction-Gaussian Accelerated

Molecular Dynamics (PPI-GaMD). Based on GaMD,17b a
new PPI-GaMD approach is developed here for further
improved sampling of PPIs. We consider a system of ligand
protein L binding to a target protein P in a biological
environment E. The system composes of N atoms with their
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coordinates
1 1

r r r, , N1≡ { ··· } and momenta p p p, , N1≡ { ··· }
⎯⇀ ⎯⇀

.
The system Hamiltonian can be expressed as

H r p K p V r( , ) ( ) ( )= + (1)

where K(p) and V(r) are the system kinetic and total potential
energies, respectively. Next, we decompose the potential
energy into the following terms:

V r V r V r V r V r

V r V r V r

V r V r

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

PL nb PL

PE nb PE LE nb LE

P,b P L,b L E,b E PP,nb P

LL,nb L EE,nb E ,

, ,

= + + +

+ + +

+ + (2)

where VP, b, VL, b, and VE, b are the bonded potential energies in
protein P, protein L, and environment E, respectively. VPP, nb,
VLL, nb, and VEE, nb are the self-non-bonded potential energies in
protein P, protein L, and environment E, respectively. VPL, nb,
VPE, nb, and VLE, nb are the non-bonded interaction energies
between P−L, P−E, and L−E, respectively. According to
classical molecular mechanics force fields,31 the non-bonded
potential energies are usually calculated as

V V Vnb elec vdW= + (3)

where Velec and VvdW are the system electrostatic and van der
Waals potential energies. The interaction energy between the
protein binding partners is VPL, nb(rPL). In PPI-GaMD, we add
boost potential selectively to the protein−protein interaction
energy according to the GaMD algorithm:17b
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− <

≥
(4)

where EPL,nb is the threshold energy for applying boost
potential and kPL,nb is the harmonic constant. The PPI-
GaMD simulation parameters are derived similarly as in the
previous GaMD algorithm.17b When E is set to the lower
bound as the system maximum potential energy (E = Vmax),
the effective harmonic force constant k0 can be calculated as

i

k
jjjjjj

y

{
zzzzzzk k

V V
V V

min(1.0, ) min 1.0,
V

max min

max avg
0 0

0σ
σ

= ′ =
−
− (5)

where Vmax, Vmin, Vavg, and σV are the maximum, minimum,
average, and standard deviation of the boosted system
potential energy, and σ0 is the user-specified upper limit of
the standard deviation of ΔV for proper reweighting. The
harmonic constant is calculated as k k

V V0
1

max min
= · −

with 0 < k0
≤ 1. Alternatively, when the threshold energy E is set to its
upper bound E Vmin k

1= + , k0 is set to

i
k
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V V
V V
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V

max min

avg min
0 0

0σ
σ

= ″ ≡ −
−
− (6)

if k0″ is found to be between 0 and 1. Otherwise, k0 is calculated
using eq 5.
In addition to selectively boosting the interaction energy

between proteins P and L, another boost potential is applied
on the remaining potential energy of the system to enhance
conformational sampling of the proteins and facilitate protein

diffusion and rebinding. The second boost potential is
calculated using the total system potential energy other than
the interaction potential between the proteins as

l
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V r
k E V r V r E

V r E
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D D D D D

D D

2
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where VD is the total system potential energy other than the
interaction potential between the proteins, ED is the
corresponding threshold energy for applying the second
boost potential, and kD is the harmonic force constant. This
leads to dual-boost PPI-GaMD with the total boost potential
ΔV(r) = ΔVPL, nb(rPL) + ΔVD(r). PPI-GaMD is currently
implemented in the GPU version of AMBER 202132 but
should be transferable to other MD programs as well.
As noted above, the idea of selectively boosting the

interaction energy between proteins is encouraged from
previous aMD29 and tempered binding8b studies. The aMD
with selective boosting of the van der Waals interactions
between the protein and peptide could significantly accelerate
the slow peptide unbinding process.29 In addition, tempered
binding8b significantly accelerates the slow protein dissociation
process by dynamically scaling electrostatic and van der Waals
interactions between different groups of protein atoms by a
factor, λ, which is updated among a ladder of discrete values, λi.
However, the current PPI-GaMD approach is different in
terms of the following. First, the total non-bonded potential
energy of both electrostatic and van der Waals interactions
between proteins is boosted selectively. Second, another boost
is applied to the remaining potential energy of the system to
model the system’s flexibility and facilitate the protein
rebinding. Finally, the PPI-GaMD boost potentials are applied
systematically according to the GaMD formula, which ensures
proper reweighting of the simulations to recover the original
protein binding thermodynamics and kinetics. It is worth
noting that PPI-GaMD is also different from previous GaMD
algorithms, including standard GaMD in which the boost
potential was applied to the system dihedrals and/or total
potential energy,26b,27a,b ligand GaMD (LiGaMD) in which the
non-bonded potential energy of the bound ligand is selectively
boosted,33 and peptide GaMD (Pep-GaMD) in which the
essential potential energy of the highly flexible peptide is
selectively boosted.34 In contrast, the total non-bonded
interaction potential energy between the protein binding
partners is selectively boosted in PPI-GaMD to enhance PPIs.

Protein Binding Free-Energy Calculations from 3D
Potential of Mean Force. We calculate protein binding free
energy from 3D potential of mean force (PMF) of ligand
protein displacements from the target protein as the
following:33−35

G W RT
V
V

LnD
b0

3
0

Δ = −Δ −
(9)

where V0 is the standard volume, Vb = ∫ be
−βW(r) dr is the

average sampled bound volume of the ligand protein with β =
1/kBT, kB is the Boltzmann constant, T is the temperature, and
ΔW3D is the depth of the 3D PMF. ΔW3D can be calculated by
integrating Boltzmann distribution of the 3D PMF W(r) over
all system coordinates except the x, y, and z of the protein:
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W RT
r

r
Ln

e d

dD
u

W r

u
3

( )

Δ = −
∫

∫

β−

(10)

where Vu = ∫ u dr is the sampled unbound volume of the ligand
protein. The exact definitions of the bound and unbound
volumes Vb and Vu are not important as the exponential
average cutoff contributions are far away from the PMF
minima.35b A python script “PyReweighting-3D.py” in the
PyReweighting tool kit (http://miao.compbio.ku.edu/
PyReweighting/)33,36 was applied for reweighting PPI-GaMD
simulations to calculate the 3D reweighted PMF and
associated protein binding free energies.
Binding Kinetics Obtained from Reweighting PPI-

GaMD Simulations. Reweighting of protein binding kinetics
from PPI-GaMD simulations followed a similar protocol using
Kramers’ rate theory that has been recently implemented in
kinetics reweighting of the GaMD,27c LiGaMD,33 and Pep-
GaMD simulations.34 Provided the sufficient sampling of
repetitive protein dissociation and binding in the simulations,
we recorded the time periods and calculated their averages for
the protein sampled in the bound (τB) and unbound (τU)
states from the simulation trajectories. The τB corresponds to
the protein residence time. Then, the protein dissociation and
binding rate constants (koff and kon) were calculated as

k
1

off
Bτ

=
(11)

k
L

1
on

Uτ
=

·[ ] (12)

where [L] is the ligand protein concentration in the simulation
system.
According to Kramers’ rate theory, the rate of a chemical

reaction in the large viscosity limit is calculated as27c

k
w w
2

eR
m b F k T/ B

πξ
≅ −Δ

(13)

where wm and wb are frequencies of the approximated
harmonic oscillators (also referred to as curvatures of the
free-energy surface37) near the energy minimum and barrier,
respectively, ξ is the frictional rate constant, and ΔF is the free-
energy barrier of transition. The friction constant ξ is related to
the diffusion coefficient D with ξ = kBT/D. The apparent
diffusion coefficient D can be obtained by dividing the kinetic
rate calculated directly using the transition time series collected
directly from simulations by that using the probability density
solution of the Smoluchowski equation.38 In order to reweight
protein kinetics from the PPI-GaMD simulations using
Kramers’ rate theory, the free-energy barriers of protein
binding and dissociation are calculated from the original
(reweighted, ΔF) and modified (no reweighting, ΔF*) PMF
profiles, similar for curvatures of the reweighed (w) and
modified (w*, no reweighting) PMF profiles near the protein
bound (“B”) and unbound (“U”) low-energy wells and the
energy barrier (“Br”), and the ratio of apparent diffusion
coefficients from simulations without reweighting (modified,
D*) and with reweighting (D). The resulting numbers are then
plugged into eq 13 to estimate accelerations of the protein
binding and dissociation rates during PPI-GaMD simula-
tions,27c which allows us to recover the original kinetic rate
constants.

Simulation Protocols. PPI-GaMD simulations were
demonstrated on the barnase−barstar system using the dual-
boost scheme. The simulation system was constructed using a
high-resolution (2.0 Å) crystal structure of the barnase−barstar
complex (PDB ID: 1BRS)39 that has been widely used in
previous simulations.7a,8a,b,9,21b,23,24 Chain B in the 1BRS PDB
structure was used for barnase, while chain F was super-
imposed to chain E and used for barstar as a number of
residues are missing in chain E. Residues 40 and 82 in barstar
were computationally restored to cysteine as in the wild-type
protein. The missing hydrogen atoms were added using the
tleap module in AMBER.32 The AMBER ff14SB force field40

was used for the protein. The system was neutralized by adding
counter ions and immersing in a cubic TIP4P2015 water
box,41 which was extended for 18 Å from the protein−protein
complex surface. The TIP4P2015 water model was chosen
here because it was shown to be more accurate in calculating
the kinetics of barnase−barstar binding in previous MD
simulations.8b

The simulation system was first energy minimized with 1.0
kcal/mol/Å2 constraints on the heavy atoms of the proteins,
including the steepest descent minimization for 50,000 steps
and conjugate gradient minimization for 50,000 steps. The
system was then heated from 0 to 310 K for 200 ps. It was
further equilibrated using the NVT ensemble at 310 K for 200
ps and the NPT ensemble at 310 K and 1 bar for 1 ns with 1
kcal/mol/Å2 constraints on the heavy atoms of the protein,
followed by 2 ns short cMD without any constraint. The PPI-
GaMD simulations proceeded with 14 ns short cMD to collect
the potential statistics, 46 ns PPI-GaMD equilibration after
adding the boost potential, and then six independent 2000 ns
production runs. The length of 2000 ns was chosen here
because it could capture ≥3 protein binding and unbinding
events in each simulation, which allowed us to calculate
accurate binding free energy and kinetic rates as suggested in
previous LiGaMD33 and Pep-GaMD studies.34 At least three
independent simulations were needed to obtain good statistics,
for which six PPI-GaMD simulations were performed in this
study.
It provided more powerful sampling to set the threshold

energy for applying the boost potential to the upper bound
(i.e., E = Vmin + 1/k) in our previous studies of ligand/peptide
dissociation and binding using LiGaMD33 and Pep-GaMD.34

Therefore, the threshold energies for applying the boost
potentials were all set to the upper bound in the PPI-GaMD
simulations. In order to observe protein dissociation during
PPI-GaMD equilibration while keeping the boost potential as
low as possible for accurate energetic reweighting, the σ0P and
σ0D parameters were set to 2.9 and 7.0 kcal/mol, respectively,
in the final PPI-GaMD simulations. PPI-GaMD production
simulation frames were saved every 0.2 ps for analysis.
The VMD42 and CPPTRAJ43 tools were used for simulation

analysis. The 1D, 2D, and 3D PMF profiles, as well as the
protein binding free energy, were calculated through energetic
reweighting of the PPI-GaMD simulations. The interface
residues were defined as those from different protein subunits
located within 10 Å between their Cα atoms in the X-ray
complex structure.8b,44 Root-mean-square deviation (RMSD)
was calculated for the Cα atoms of the interface residues in the
PPI-GaMD simulation frames relative to the X-ray structure
after alignment. The protein interface distance was calculated
between the center of masses (COMs) of the above defined
interface residues from the different proteins. Protein interface
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RMSD and distance were chosen as reaction coordinates for
calculating the PMF profiles. 2D PMF profiles of the interface
RMSD and protein residue distances were calculated to
analyze the protein binding pathways and important
interactions. The bin size was set to 1.0 Å for these reaction
coordinates. The cutoff for the number of simulation frames in
one bin was set to 500 for reweighting of the 1D and 2D PMF
profiles. The 3D PMF was calculated from each individual PPI-
GaMD simulations of barstar binding to barnase in terms of
displacements of the COM in the barstar interface residues
from the COM of barnase interface residues in the X, Y, and Z
directions. The bin sizes were set to 1.0 Å in the X, Y, and Z
directions. Testing calculations were performed to determine
the proper cutoff of simulation frames in one bin for 3D PMF
reweighting. An initial value of 500 was used. It was then
gradually decreased for calculating the 3D PMF, and the
position of the resulting free-energy minimum was examined.
The cutoff of simulation frames in one bin for 3D PMF
reweighting (ranging from 100 to 150 for six individual PPI-
GaMD simulations) was set to the threshold value, below
which the calculated 3D PMF minimum would be shifted. The
protein binding free energies (ΔG) were calculated using the
reweighted 3D PMF profiles.

■ RESULTS

PPI-GaMD Simulations Significantly Accelerated the
Barnase−Barstar Dissociation. All-atom PPI-GaMD simu-
lations were performed on an X-ray crystal structure of the
barnase−barstar complex (Figure 1A). Six independent 2000

ns PPI-GaMD production simulations were obtained (Table
1). The PPI-GaMD simulations recorded average boost
potentials of ∼35−36 kcal/mol with ∼6.3−6.4 kcal/mol
standard deviation. The interface RMSD was calculated as a
function of simulation time (Figure 1B) to record the number
of barstar dissociation and association events (ND and NB) in
each of the 2000 ns PPI-GaMD simulations. With close
examination of the simulation trajectories, cutoffs of the
interface RMSD for the unbound and bound states were set to
>10 Å and <5.0 Å, respectively. Compared with the protein
residence time determined from experiments (∼34.7 h),3 PPI-
GaMD significantly reduced the protein residence time to tens
of nanoseconds by ∼12 orders of magnitude (Figure 1B).
Because of system fluctuations, we recorded only the binding
and dissociation events lasting for more than 1.0 ns. Five
binding and six dissociation events were observed in both Sim1
and Sim3. In Sim2, three binding and four dissociation events
were captured. For the remaining simulations (Sim4−Sim6),
three binding and three dissociation events were recorded
(Table 1). Therefore, repetitive barstar protein dissociation
and rebinding were successfully captured in each of the 2000
ns PPI-GaMD simulations (Figure 1B and Figure S1).

Multiple Protein Binding and Dissociation Pathways
Were Identified from PPI-GaMD Simulations. By closely
examining the PPI-GaMD simulation trajectories, barnase
Arg59 and barstar Asp39 could form a salt bridge during the
binding and unbinding processes. Therefore, the interface
RMSD and the distance between barnase Arg59 and barstar
Asp39 (denoted as BN:R59-BS:D39 distance) were used as

Figure 1. PPI-GaMD simulations captured repetitive dissociation and binding of barstar to barnase: (A) an X-ray structure of the barnase−barstar
complex. The barnase and barstar are shown in yellow and gray cartoons, respectively. Key barnase residues Lys27, Ser38, Arg59, Arg83, and Arg87
and barstar residues Asp39 and Glu80 are highlighted in sticks. Three salt bridges are shown in red dashed lines with their corresponding distance
values in angstrom; (B) time courses of the protein interface root-mean-square deviation (interface RMSD) calculated from six independent 2000
ns PPI-GaMD simulations. The interface residues are defined as those from different protein subunits located within 10 Å between their Cα atoms
in the X-ray complex structure. Root-mean-square deviation (RMSD) was calculated for the Cα atoms of the interface residues in the PPI-GaMD
simulation frames relative to the X-ray structure after alignment.

Table 1. Summary of PPI-GaMD Simulations Performed on Binding of Barstar to Barnasea

PDB ID length (ns) ΔV (kcal/mol) NB ND ΔGsim (kcal/mol) ΔGexp (kcal/mol)

1BSR Sim1 2000 35.74 ± 6.35 5 6 −17.79 ± 1.11 −18.903

Sim2 2000 35.97 ± 6.31 3 4
Sim3 2000 35.78 ± 6.36 5 6
Sim4 2000 35.47 ± 6.32 3 3
Sim5 2000 36.06 ± 6.40 3 3
Sim6 2000 35.74 ± 6.35 3 3

aΔV is the total boost potential; ND and NB are the number of observed barstar dissociation and binding events, respectively; ΔGsim and ΔGexp are
the barnase−barstar binding free energies obtained from PPI-GaMD simulations and experiments, respectively.
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reaction coordinates to calculate free-energy profiles (Figure
2A). One low-energy “bound” (B) conformational state was
identified from the PPI-GaMD simulations, in which the
interface RMSD and BN:R59-BS:D39 distance centered
around 2.5 and 11.0 Å, being closely similar to the X-ray
structure (Figure 2A). Two low-energy “intermediate” states
(I1 and I2) were also identified from the free-energy landscape,
in which the interface RMSD and BN:R59-BS:D39 distance
centered around (7.5 and 6.0 Å) and (10 and 28 Å),
respectively. Two low-energy “unbound” states (U1 and U2)
were further identified, in which the interface RMSD and
BN:R59-BS:D39 distance centered around (20.5 and 45.0 Å)
and (27.5 and 20.0 Å), respectively.
The intermediate (I1 and I2) and unbound (U1 and U2)

conformations are shown in Figure 2D−G. In the I1 state, the
barnase Arg59 formed a salt bridge with the barstar Asp39
(Figure 2D). Remarkably, positively charged residues (Lys27,
Arg83, and Arg87) in barnase also formed electrostatic
interactions with the negatively charged residue Glu80 in
barstar (Figure 2D). In the I2 state, the same positively
charged residues in barnase (Lys27, Arg83, and Arg87) formed
electrostatic interactions with the negatively charged residue
Asp39 in barstar (Figure 2E). Therefore, the COM distance

between the barnase Ala37-Ser38 and barstar Gly43-Trp44
(denoted as BN:A37S38-BS:G43W44 distance) and the
distance between barnase Lys27 and barstar Glu80 (denoted
as BN:K27-BS:E80 distance) were selected as additional
reaction coordinates to calculate the free-energy profiles
(Figure 2B,C). Similar “bound” (B), “intermediate” (I1 and
I2), and “unbound” states (U1 and U2) were identified from
the free-energy profiles (Figure 2B,C). In the intermediate I1
state, the BN:K27-BS:E80 distance and BN:A37S38-
BS:G43W44 distance centered around 5.8 and 18.2 Å,
respectively. In the intermediate I2 state, the BN:K27-
BS:E80 distance and BN:A37S38-BS:G43W44 distance
centered around 23.2 and 5.0 Å, respectively. With significant
differences between the two intermediate states (Figure 2D,E),
barstar appeared to adopt two pathways for binding to the
barnase. One was through electrostatic interactions between
positively charged residues in barnase (Arg59, Lys27, Arg83,
and Arg87) and negatively charged residues in barstar (Asp39
and Glu80) (Figure 2D). The other was mainly through
electrostatic interactions between positively charged residues
in barnase (Lys27, Arg83, and Arg87) and a negatively charged
residue in barstar (Asp39) (Figure 2E).

Figure 2. Free-energy profiles and low-energy conformational states of barstar binding to barnase: (A) 2D PMF profiles regarding the interface
RMSD and the distance between the CZ atom of barnase Arg59 and CG atom of barstar Asp39. (B) 2D PMF profiles regarding the interface
RMSD and the distance between the center of masses (COMs) of barnase residues Ala37-Ser38 and barstar residues Gly43-Trp44. (C) 2D PMF
profiles regarding the interface RMSD and the distance between the NZ atom of barnase Lys27 and CD atom of barstar Glu80. (D−F) Low-energy
conformations as identified from the 2D PMF profiles of the (D) intermediate “I1”, (E) intermediate “I2”, (F) unbound “U1”, and (F) unbound
“U2” states. Key barnase residues Lys27, Ser38, Arg59, Arg83, and Arg87 and barstar residues Asp39 and Glu80 are highlighted in sticks. Strong
electrostatic interactions are shown in red dashed lines with their corresponding distance values labeled in intermediate “I1” (D) and “I2” (E)
states.
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Structural clustering of barstar was applied to six individual
PPI-GaMD trajectories (Sim1 to Sim6) to identify the
representative binding pathways of barstar to barnase (Figure
3). Here, the hierarchical agglomerative algorithm in
CPPTRAJ43 was applied. The cutoff was set to 3.5 Å for the
interface RMSD to form a cluster. The structural clusters were
reweighted to obtain their original free-energy values ranging
from 0.0 to 10.0 kcal/mol. The top 100 reweighted clusters
were selected to represent the barstar binding pathways
(Figure 3). Overall, binding of barstar to barnase occurred via
two main binding sites, involving barnase residues Arg59 and
Ala37-Ser38, respectively. Both sites were involved during
barstar binding to barnase in Sim1, Sim3, Sim4, and Sim5
(Figure 3A,C−E). In Sim2, barstar bound to barnase mainly
via interactions with barnase Arg59 (Figure 3B). In Sim6,
barstar bound to barnase mainly through the barnase Ala37-
Ser38 site (Figure 3F). These findings again revealed two
pathways for barstar binding to barnase. The two intermediate
states were similar to those in the MSM obtained from ∼2 ms

simulations.24 The two binding pathways were also similarly
identified from umbrella sampling simulations.21b

Electrostatic Interactions Played an Important Role
in the Barstar Binding/Unbinding. Next, we examined key
residue interactions during barstar binding to barnase (Figure
1). In the X-ray structure (Figure 1A), three salt bridges were
found between barnase and barstar, i.e., BN:K27-BS:D39,
BN:R83-BS:D39, and BN:R87-BS:D39. Therefore, the dis-
tances between these residues and the interface RMSD were
further chosen as reaction coordinates to calculate 2D PMF
profiles (Figure 4). Five low-energy states were identified from
the calculated 2D PMF profiles, including “bound” (B),
“intermediate” (I1 and I2), and “unbound” (U1 and U2) states
(Figure 4A−C). In the “bound” state, the (interface RMSD
and BN:K27-BS:D39 distance), (interface RMSD and
BN:R83-BS:D39 distance), and (interface RMSD and
BN:R83-BS:D39 distance) centered around (2.5 and 7.5 Å),
(2.8 and 8.2 Å), and (2.7 and 8.5 Å), respectively (Figure 4).
In the “I1” state, the (interface RMSD and BN:K27-BS:D39
distance), (interface RMSD and BN:R83-BS:D39 distance),

Figure 3. Binding pathways of barstar to barnase revealed from the (A) “Sim1”, (B) “Sim2”, (C) “Sim3”, (D) “Sim4”, (E) “Sim5”, and (F) “Sim6”
PPI-GaMD trajectories. The barstar interacted with barnase residues Ala37-Ser37 or Arg59 in the intermediate conformations. Barnase is shown in
blue ribbons. The barstar structural clusters (sphere) are colored by the reweighted PMF free-energy values in a green (0.0 kcal/mol)-white-red
(6.0 kcal/mol) color scale.

Figure 4. (A) 2D PMF profiles regarding the interface RMSD and the distance between the NZ atom of barnase Lys27 and CG atom of barstar
Asp39. (B) 2D PMF profiles regarding the interface RMSD and the distance between the CZ atom of barnase Arg83 and CG atom of barstar
Asp39. (C) 2D PMF profiles regarding the interface RMSD and the distance between the CZ atom of barnase Arg27 and CG atom of barstar
Asp39.
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and (interface RMSD and BN:R83-BS:D39 distance) centered
around (7.5 and 15.0 Å), (7.8 and 17.2 Å), and (7.7 and 16.0
Å), respectively (Figure 4). In the “I2” state, the (interface
RMSD and BN:K27-BS:D39 distance), (interface RMSD and
BN:R83-BS:D39 distance), and (interface RMSD and
BN:R83-BS:D39 distance) centered around (11.0 and 5.8
Å), (10.5 and 9.0 Å), and (11.0, 9.5 Å), respectively (Figure 4).
The representative intermediate conformational states (I1 and
I2) are shown in Figure 2D,E. In the “I1” state, the barstar
negatively charged residue Asp39 formed electrostatic
interaction with the positively charged residue Arg59 in
barnase with a BN:R59-BS:D39 distance of ∼7.0 Å (Figure
2D). Additionally, the barstar negatively charged residue Glu80
formed electrostatic interaction with positively charged
residues Lys27, Arg83, and Arg87 in barnase, especially
between BN:K27 and BS:E80 with a short distance of ∼5.8
Å (Figure 2D). In the “I2” state, the barstar negatively charged
residue Asp39 formed electrostatic interaction with positively
charged residues Lys27, Arg83, and Arg87, especially between
BN:K27 and BS:D39 with a distance of ∼5.5 Å (Figure 2E).
Therefore, the above favorable electrostatic interactions in the
“intermediate” states played an important role in the binding
and unbinding of barstar, being highly consistent with the
mutation experimental data.30a,45 In summary, long-range
electrostatic interactions played a key role in the binding/
unbinding of barstar−barnase. The electrostatic interactions
involving residues Lys27, Arg83, and Arg87 in barnase
appeared to be an anchor to pull the barstar to its target
binding site. Similar findings were obtained from previous MD
simulations.21b

Protein Binding Free Energy Calculated from PPI-
GaMD Simulations Agreed with Experimental Data. We
calculated the binding free energy of barstar to barnase from
each individual PPI-GaMD simulations based on 3D PMF of
the displacement of barstar interface residues from the barnase
interface residues in the X, Y, and Z directions. The 3D PMF
was energetically reweighted through cumulant expansion to
the second order. We then calculated the protein binding free
energy using the 3D reweighted PMF profiles. The average
barstar binding free energy was −17.79 kcal/mol with a
standard deviation of 1.11 kcal/mol, being highly consistent
with the experimental value of −18.90 kcal/mol (Table 1).3 In
summary, the binding free energy of barstar−barnase
calculated from PPI-GaMD simulations agreed well with the
experimental data. The prediction error in the PPI-GaMD
simulations was 1.11 ± 1.11 kcal/mol. Therefore, both efficient
enhanced sampling and accurate protein binding free-energy
calculation were achieved through the PPI-GaMD simulations.
Kinetics of Barnase−Barstar Binding. With accurate

prediction of the protein binding free energy, we further
analyzed the PPI-GaMD simulations to determine the kinetic
rate constants of barstar binding to barnase. We recorded the
time periods for the barstar found in the bound (τB) and

unbound (τU) states throughout the PPI-GaMD simulations.
The barstar concentration was 0.0055 M in the PPI-GaMD
simulation system. Without reweighting of the PPI-GaMD
simulations, the barstar binding (kon*) and dissociation (koff*)
rate constants were calculated directly as 8.02 ± 0.22 × 108

M−1·s−1 and 1.44 ± 0.34 × 107 s−1, respectively (Table 2).
Next, we reweighted the barstar−barnase PPI-GaMD

simulations to calculate acceleration factors of the barstar
binding and dissociation processes (Table S1 and Figure S1)
and recover the original kinetic rate constants using Kramers’
rate theory (Table 2). The dissociation free-energy barrier
(ΔFof f) decreased significantly from 6.91, 7.70, 7.60, 5.85, 9.40,
and 7.72 kcal/mol in the reweighted PMF profiles to 1.41,
1.89, 1.91, 0.18, 1.67, and 1.68 kcal/mol in the modified PMF
profiles for Sim1 to Sim6, respectively (Table S1). On the
other hand, the free-energy barrier for the barstar binding
(ΔFon) decreased slightly from 1.06, 2.01, 4.80, 0.95, 1.52, and
1.16 kcal/mol in the reweighted profiles to 0.23, 0.10, 0.76,
0.16, 0.54, and 0.21 kcal/mol in the modified PMF profiles for
Sim1 to Sim6, respectively (Table S1). The curvatures of the
reweighed (w) and modified (w*, no reweighting) free-energy
profiles were calculated near the protein bound (“B”) and
unbound (“U”) low-energy wells and the energy barrier (“Br”),
as well as the ratio of apparent diffusion coefficients calculated
from the PPI-GaMD simulations with reweighting (D) and
without reweighting (modified, D*) (Table S1). According to
Kramers’ rate theory, the barstar association was accelerated by
27.67, 0.67, 0.43, 0.17, 0.12, and 0.15 times in Sim1 to Sim6,
respectively. Remarkably, the barstar dissociation was signifi-
cantly accelerated by 1.48 × 1012, 3.04 × 1012, 6.51 × 1011,
2.54 × 1012, 9.43 × 1013, and 1.26 × 1013 times in Sim1 to
Sim6, respectively. Therefore, the average reweighted kon and
kof f were calculated as 21.7 ± 13.8 × 108 M−1·s−1 and 7.32 ±
4.95 × 10−6 s−1, being highly consistent with the correspond-
ing experimental values3 of 6.0 × 108 M−1·s−1 and 8.0 × 10−6

s−1, respectively (Table 2).

■ DISCUSSION

We have developed a new “PPI-GaMD” computational
approach for efficient enhanced sampling and accurate
calculations of protein−protein binding thermodynamics and
kinetics. PPI-GaMD works by selectively boosting the
interaction potential energy between protein binding partners.
Microsecond-timescale PPI-GaMD simulations have allowed
us to capture repetitive protein dissociation and binding as
demonstrated on the barstar−barnase model system, which
thus enabled accurate free-energy and kinetics calculations of
protein binding.
PPI-GaMD simulations revealed that electrostatic inter-

actions played a critical role in barstar binding to barnase,
being consistent with previous experimental3,30b and computa-
tional studies.8a,21b,23 The important role of electrostatic
interactions were identified in earlier cMD simulations8a and

Table 2. Comparison of Kinetic Rates Obtained from Experimental Data and PPI-GaMD Simulations for Barstar Binding to
Barnasea

PDB method kon (M
−1·s−1) kof f (s

−1) kon* (M−1·s−1) koff* (s−1)

1BRS experiment3 6.0 × 108 8.0× 10−6

PPI-GaMD 21.7 ± 13.8 × 108 7.32 ± 4.95 × 10−6 8.02 ± 0.22 × 108 1.44 ± 0.34 × 107

akon and kof f are the kinetic dissociation and binding rate constants, respectively, from experimental data or PPI-GaMD simulations with reweighting
using Kramers’ rate theory; kon* and kof f* are the accelerated kinetic dissociation and binding rate constants calculated directly from PPI-GaMD
simulations without reweighting.
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mutation experiments.3 Multiple hundreds-of-nanosecond
cMD simulations captured binding of barstar to barnase8a

and suggested that electrostatic interactions played a major
role in the protein diffusion. Schreibert and Fersht3 combined
mutation and binding experiments to identify the importance
of electrostatic interactions in the barstar binding affinity and
kinetics. In this study, 2 μs PPI-GaMD simulations have
captured both barstar binding and unbinding, further
supporting the important role of electrostatic interactions in
forming the “intermediate” and “bound” states of the barstar−
barnase system (Figures 2 and 4 and Figure S2). The charged
residue pairs, including the BN:K27-BS:E80, BN:R59-BS:D39,
BN:K27:BS:D39, BN:R83-BS:D39, and BN:R87-BS:D39,
played a critical role in barstar binding and unbinding kinetics,
thus affecting their binding thermodynamics, being consistent
with previous mutation experiments.30b The kon and koff values
of wild-type barnase−barstar were changed from (3.7 × 108 s−1

M−1 and 3.7 × 10−6 s−1) to (0.32 × 108 s−1 M−1 and 3500 ×
10−6 s−1), (0.58 × 108 s−1 M−1 and 68,000 × 10−6 s−1), (1.0 ×
108 s−1 M−1 and 53,000 × 10−6 s−1), and (1.6 × 108 s−1 M−1

and 300,000 × 10−6 s−1) in the double mutants of BN:K27A/
BS:E80A, BN:K27A/BS:D39A, BN:R83A/BS:D39A, and
BN:R87A/BS:D39A, respectively.30b Therefore, the barstar
binding free energy was changed from −19.0 kcal/mol in the
wild-type to −13.5, −10.8, −12.6, and −11.9 kcal/mol in the
BN:K27A/BS:E80A, BN:K27A/BS:D39A, BN:R83A/
BS:D39A, and BN:R87A/BS:D39A double mutants, respecti-
vely.30b Significant changes were also observed in the
BN:R59A and BS:D39A single mutants,30b suggesting the
important role of these two residues. Further PPI-GaMD
simulations could be performed to examine the effects of such
interface “hotspot” residue mutations in the future.
Compared with existing methods, including the cMD,8a

weighted ensemble,23 MSM,24 tempered binding,8b replica
exchange MD,18a umbrella sampling,21 and metadyna-
mics,19b,22 PPI-GaMD provides a more efficient and/or
easier-to-use approach for the simulation of protein−protein
binding and dissociation. In particular, ∼440 μs cMD
simulations were needed to capture binding of barstar to
barnase in order to accurately predict the protein binding
kinetics.8b However, the slow protein unbinding process was
still beyond the reach of cMD simulations. Even with the
newly developed tempered binding technique, hundreds-of-
microsecond simulations were needed to capture unbinding of
barstar from barnase.8b A total of ∼18 μs cMD simulations
were able to predict accurate protein binding rate constants
(kon) with the weighted ensemble approach.23 However, the
weighted ensemble simulations were still not able to model the
slow protein unbinding process.23 The MSM was able to
predict intermediate structures, energetics, and kinetics of
barnase−barstar binding by Plattner et al.24 However, a total of
∼2 ms simulations were needed to build the MSM. For the
replica exchange method,18a,46 a large number of replica
simulations were often needed to model PPIs. Twelve replicas
distributed in the temperature range of 290−620 K were
needed in PTMetaD-WTE, which combined replica exchange
and metadynamics, to investigate the binding mechanism of
the insulin dimer.46 The PTMetaD-WTE simulations also
required predefined, carefully chosen CVs with expert
knowledge of the studied system. The predefined CVs could
potentially lead to certain constraints on the protein binding
pathway and conformational space. Such simulations could
also suffer from the “hidden energy barrier” problem and slow

convergence if important CVs were missing.25a,g Overall, the
above methods appeared computationally expensive, requiring
tens to hundreds-of-microsecond simulations to characterize
protein binding thermodynamics and kinetics. In this context,
PPI-GaMD that has allowed us to capture repetitive protein
binding and unbinding through microsecond-timescale simu-
lations provides a highly efficient approach to enhanced
sampling of protein binding and dissociation.
PPI-GaMD shall be of wide applicability for PPIs other than

barstar binding to barnase. In addition to protein binding free
energy, it has enabled calculations of protein dissociation and
binding rate constants. Remarkably, the barstar dissociation
from barnase was accelerated by ∼11−13 orders of magnitude.
It is worth noting that a slight decrease in the protein
association rate (∼2.7 times) was observed in the PPI-GaMD
simulations (Table 2), which was similar to our recently
developed LiGaMD33 and Pep-GaMD34 methods. Never-
theless, PPI-GaMD could be further combined with other
enhanced sampling methods to facilitate the protein rebinding
in future studies, including the replica exchange47 and
weighted ensemble48 that have been successfully combined
with GaMD. On the other hand, coarse-grained modeling,9a,49

which significantly reduces the system degrees of freedom,
could be applied to extend simulation timescales and
investigate PPIs such as binding of the G proteins to
GPCRs.50 These techniques could be incorporated to further
improve the PPI-GaMD efficiency and advance studies in
enhanced sampling of PPIs.
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